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1. Introduction

Many problems in extremal theory may be most naturally and profitably
discussed in terms of certain underlying point processes. Typically one is
interested in the limit of a sequence of point processes obtained from extremal
considerations, and it is often the case that a Poisson convergence result can
be derived. For example, Pickands [13], Resnick [14] and Shorrock [7] all
consider point processes involving "record times" in i.i.d. settinas - a research
direction which was initiated by the works of Dwass ([2]) and Lamperti ([61)
on extremal processes. Resnick [15] further noted that many results in this
setting can be derived from a "Complete Poisson Convergence Theorem" in two
dimensions.

It is known that the i.i.d. assumption can often be relaxed. For examrple
Leadbetter [8] considers the point process of exceedances of a high level u,
by a stationary sequence £ (i.e. points where £5 > un), obtaining Poisson
1imits under quite weak dependence restrictions. These involve a Tona ranae
dependence condition "D(un)" of mixing type, but much weaker than stronc
mixing, and a local dependence condition “D'(un)". Adler [1] generalizes
Resnick's two dimensional result in [15] by assuming the conditions D and D'.
In results of this kind, the long ranage dependence condition (e.q. D(un)) is used
to give asymptotic independence of exceedances whereas the local restriction
(e.q. D'(un)) avoids clustering of exceedances. As a result in the limit, the
point process under consideration behaves just 1ike one obtained from an i.i.d.
sequence. If the local condition is weakened or omitted, then clustering of
exceedances may occur. This clustering does not materially affect the asymptotic
distribution of the maximum, but significantly chanqes those of all other
extreme order statistics. Some such situations have been considered. For l:j:<

example, Rootzen [6] studies the exceedance point process for a class of stable
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processes. Leadbetter [9] considers Poisson results for cluster centers which
yield the asymptotic distribution of the sequence maxima but not of other
order statistics. Mori [12] characterizes the 1imit of a sequence of point
processes in two dimensions under strong-mixing.

Our aim in this work is to study the detailed structure of the limiting
forms of exceedance point processes under broad assumptions - especially when
clustering may occur. The results yield, in particular, the asymptotic distri-
butions of extreme order statistics in the more general form required by the
presence of high local dependence.

In this paper we use the Laplace Transform functional to obtain the
desired point process convergence results. The relevant definitions and basic
theorem are cited in Section 2 along with a discussion of the dependence con-
ditions used, and preliminary results. The main results, given in Section 3,
both characterize all possib]e'1imits as compound Poisson processes, and
provide sufficient conditions for the existence of such l1imits. The Laplace
Transform approach is especially convenient for the main characterization
result, and is therefore used here instead of the point process convergence
criterion of Kallenberg which is often employed to give sufficient conditions
for the existence of limits (cf. [9], [4]).

As noted above {(cf. also [9]) the presence of exceedance clustering does
not affect the asymptotic distribution of the maximum. It does, however, alter
the asymptotic distributions of other order statistics, by virtue of the fact
that e.g. the second largest value may now occur in the same cluster as the
largest. In Section 4 we apply the results of Section 3 to obtain specific

forms for the asymptotic distributions of extreme order statistics in terms of

the relevant extreme value distributions of extreme value distribution for the




maximum, and the cluster size distributions.
Finally we note that corresponding multi-level theorems and generalizations

of the two-dimensional point process result of [11] may be found in the thesis

[3].

2. Preliminaries and Framework

A point process n on [0,1] is a random element in the space of integer-
valued Borel measures on [0,1] with the vague topology and Borel o-field.
The function Ln(f) = E exp(-f[o’]]fdn) defined on the set of non-negative
measurable functions on [0,1] is said to be the Laplace Transform of n. As
in the case of random variables, Ln(f) completely determines the distribution

of n. The following result is useful.

Theorem 2.1. Suppose 1, NysNps... are point processes on [0,1]. Then "
converges in distribution to n if and only if L”n -> Ln(f) for each non-necative
continuous function f on [0,1]. In this case ffdnn converges in distribution
to Sffdn for each bounded measurable function f whose points of discontinuity

constitute a set of zero n-measure a.s.

See, for example, [5] for a proof of Theorem 2.1 and a detailed account of
the theory of point processes.

Throughout, E].Kz,... will be a stationary sequence of random variables.
Write M(I) = max ({i: i « I) for any set 1 of integers, and Mn = max(&i: 1<i<n).

Assume that the common distribution function F satisfies (1-F(x))/(1-F(x-))=1

as x » degf sup (u: F(u) < 1), which ensures (cf. [10], Theorem 1.1.13) the

existence of a sequence uﬁ') such that fﬁﬁ;ﬁ
o
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(2.1) 1-F(u’(]T))~, on as 1 b w

for each 1 > 0. Let xﬁf} be the indicator of the event (ﬁj > ugT), j=1,...,n)
and NgT) the point process on [0,1] with points (j/n: 1 < J < n for which

gj > ugT)). This is, NgT) is the point process (on [0,1]) of exceedances of
the "level" uiT) by the random variables E]""En after "time-normalization" by
the factor 1/n. Suppose {uﬁf%} and {uﬁt%} are two different sequences satisfy-

ina (2.1), and NiT% R NgT% are the corresponding point processes defined as

above. Then

P{Nr(‘t]) # N'(‘1%} < n|F(uf"i%) - F(u,("',%” v 0 as n o w

by (2.1). Since we are only interested in weak convergence results, the choice
of {uﬁT)} thus need not be specific, and indeed we can use any convenient {uﬁT)}
satisfying (2.1) for our purposes.

We turn now to the type of long range dependence condition appropriate
for the present context. If {un} is a sequence of constants, for each n,i,j

with 1T < i < j<n, define Bg(un) to be the o-field generated by the events

&S < un), i<s <3. Also for eachnand 1 - s < n-1, write

agg = max (| P(A 0 B) - P(AP(B)|: A« B¥(u ), 8 c B, (u)).

{Ej} is said to satisfy the condition A(un) if e 0 as n » = for some
sequence {tn} with £, = o(n). The array of constants o g £=1,2,...,n-1,

will be referred to as the mixing coefficients of the condition A(un) whenever
there is no danger of causing ambiguity. It is worth noting that the condition
A(un) is stronger than the distributional mixing condition D(un) (cf. [10]),

but weaker than strong-mixing. For our purposes, u, will always be ugT) for
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some T > 0. Since there are only a finite number of events involved for each
n, the condition A(ugT)) can be easily verified in some cases. Indeed, the
strong mixing condition is "unnecessarily strong" for most situations in
the study of extreme value theory in that it poses restrictions not just on
the extremal but on the overall behavior of the underlying sequence.

The condition A(un) can be expressed in terms of random variables as

well. The following result is a special case of [18], equation (I°).
Lemma 2.2. For each n and 1<f<n-1, write

Bn ¢ = SuP (|EYZ-EY-EZ]: Y and Z measurable with respect to
1j n i < i -
bi(un) and Bj+((un) respectively, 0 <Y, Z <1, 1< j < n-£.)

Then ap p < By oy f.]G“n ¢ where o is the mixing coefficient of the :ondition

n,¢
A(un). In particular, Ej satisfies the condition A(un) if and only if

R -+ 0 for some {?n} with Kn = o(n).

4
n,t,

Loynes [11] generalized the classical Extremal Types Theorem by noticing
that the maxima of {Xj} over appropriately chosen sets in 1,2,...,n are
asymptotically independent when {En} is strongly mixing. The technique has
been widely used in various forms since then, and the partition that we use
here is similar in spirit to that in [9]. Specifically the random variables

) (c,

{Ei} are separated into successive groups (C,...,Er
n n+l

S SO
2rn

of n consecutive terms (for appropriately chosen rn). Then all exceedances of
Un within a group are regarded as forming a cluster. The following lemma

shows that the separate clusters are asymptotically independent.

Lemma 2.3 Let v > 0 be a constant and let the condition A(uﬁT)) hold for the
stationary sequence {ﬁj}. Suppose {kn} is a sequence of integers for which

there exists a sequence {In} such that
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(2.3) kn“n,?n » 0

where W p is the mixing coefficient of the condition A(u£1)). Then for each

non-negative measurable function f on [0,1],
k ir
n . (T) n n ’{)
(2.4) Eexp(- J f(3/n)y, 3) - Il E exp(-) f(i/n). ") » 0
21 sJ i=1 n,J

j= il
J=(i l)rn+l
where r_ = [n/kn].

(r) ..
n Divide

and Xn,j=X '

1,2,...,n into sets of consecutive integers I],If,lz,lg,...,

Proof. For simplicity of notation, write u,u

,IE where

]

. . . (4 o . . "
Ij ((3 1)rn+l,...,3rn In), Ij (Jrn £n+1,...,3rn), Jj 1,2,...,kn 1,

I, = ((kn—l)rn+1,...,knrn-?n), If = (knrn—ln+1,...,n). Thus each set Ij

kn n

contains rn-(n integers, with each I? except I; having (n integers, and
: n

* . ) . . - _ C e
Ik having n knrn+£n __kn+fn {since rn [n/kn]). By the non-negativity of f

n
and since if anfo for some j(1$ then M(I?) U, it is readily seen that
kn N
0 <Eexp(-] ) fli/n)x, 5) - Eexp(-] £(3/n)x, ;)
'i:] j(Ii 4 j:] 9
j_(kn—1)P{M(If) > un} + p{M(IEn) - un}
(2.5)
< [lkp=1)g, + (k +€ )T PlE > u )
k(£ #1)
~ "’L":.:-‘—“‘ + 0 as n > o

by (2.1). It follows by Lemma 2.2 and an obvious induction that

"
1




7
kn kn
(2.6) [E exp(-) ] f(i/n)y, ;) - 0 E exp(-) f(i/n)x, )| < 16 k n
§21 j‘li Xn,J i=1 i1y n,J nn.fo
which tends to zero by (2.3). Finally, using the basic inequality
(2.7) byl [ '2( i | 1 1,2 k
2.7 |ﬂy.—ll X < Yi=X:ls 0<.Y-' X'f_ ’ iz, 9oy
=1 i1t Tt ] -0
we conclude that
kn kn irn
(2.8) | 1 E exp(-} f(j/n)xn i) -1 E exp(-) f(j/n)xn j)\
i=1 il N Y j=(i-1)r +1 ,
i n
kn ir, .
< ) IE exp(-jI fF(arm)x, ;) - E exn(jz(i_”r +]f(J/n)xM-)l
i=] Jody ] n
< kP IEy >l
~ knfnl/n » 0 asn-»w
by (2.2). The result now follows by combining (2.5), (2.6) and (2.8). n

3. Compound Poisson Convergence.
Our main purpose in this section is to characterize any distributional

(

1imit N7 for the exceedance point processes (N

tions are not made and clustering of exceedances may thus occur. As noted in
Section 2 {and discussed in more detail in [9]) the exceedances (if any) in

each interval (1,2,...,rn), (rn+1,...,2rn)... may be reagarded as forming the

clusters, with L appropriately chosen. For each n the cluster size distribution

may thus be regarded as the distribution of the number of exceedances in an

interval which contains at least one, i.e. by stationarity

T)} when local dependence assump-

Codea aliala oL

, - [
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(13.1) " (it = P y S R L A R R I
: n j=p N i nj ’ ey

where, as previously, ng) is the indicator of the event {Kj > uﬁT)}. It will
be shown in Theorem 3.2 that any 1imit in distribution for the exceedance
point process NﬁT) is necessarily compound Poisson with atom sizes havina
distribution =#{i} = lim un{i}. The following result is a technical lemma for

n->oo
use in the proof of the main theorem.

T)) holds
T) -0T

=N e~

Lemma 3.1. Let v > 0 be a constant. Suppose that the condition A(u

for {( } and there exists a constant 0 « [0,1] such that 1im P{M < u'"’}=e

(
pw NN

For a fixed continuous function f on [0,1] and a sequence {kn} which tends to infinity

and satisfies (2.2), (2.3), define functions Rn' ﬁn on [0,1] by
k irn )
(1-E exp(-] F(3/n)xp 3)) 1 (t) ,
Z jz(i-])r a0 .3 [(i-mn ir]
et
k ir
R (t) =7 (1 E exp(-f(t) " (1)) (t)
n i=1 J-(1-1)rn+1xn’J

where r = [n/kn]. Then as n » o,

(i) & (R (t) - R (t)) » O uniformly in t,

-
=]

n e DR .
(ii) R (t) - o1(1-§ e N (t) » 0 uniformly
ryn jzl n (0,kr/n]

in t, where ﬂn{j} is defined by (3.1).




(t)(1 + o(1))
j=] (O’T" d—_‘—

since knrn/n +~ 1, and where the o(1) term is uniform in t. The conclusion

(i) now follows at once. 0 =
The main result is now readily obtained.
Theorem 3.2. Suppose T > 0 is a constant and tﬁe condition A(ugT)) holds for --

the stationary sequence {Ej}. If NaT) converges in distribution to some point

process N(T), then the latter must be a Compound Poisson Process with a Laplace

Transform of the form —
L
. 2
(3.2) exp { 01 [ [1 - L(f(t))] dt}
0
vhere L is the Laplace Transform of some probability measure u on {1,2,...} . %—é-

and 6 = - L log 1im P4 < ul™)} < [0,1]. If 0 # 0, then 7§} = 1im 7 (i)
T o n—n n_mn

where T is defined by (3.1) for any sequence {kn} which tends to infinity and

satisfies (2.2), (2.3). Lili
Proof. Again we suppress the superscript 1 for the simplicity of notation. i;f
By Theorem 2.1, the assumption that Nn converges in distribution implies that L*

Nn([O,l]) converges in distribution since [0,1] has empty boundary (in itself).

This implies, in particular, that P{Mn <u} = P{Nn([o,l]) = 0} converges as

n
n-+owo, It follows from [9], Theorem 2.2 that there exists a constant 0 in

[0,1] such that P(M_<u } » e,

If 6 = 0, the conclusion follows trivially. R
Assume now that 6 > 0, and let Rn and ﬁn be as defined in Lemma 3.1 for a

fixed non-negative continuous function f, and a sequence {kn} which tends to

-

o P Py
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infinity and satisfies (2.2), (2.3). By Lemma 2.3, since the first term

of (2.4) has a non zero 1imit the ratio of the two terms tends to one and hence

n
log E expl-| _faN) = Tog E exp(=] F(d/n)xy;)

(0,11 j=1
] s v
;: o (3m)x, ;) + ol1) B
=) log E exp(-~) f(i/n)x. ) + o1 -
i=1 JE(i-Nr nsJ
, n o
(3.3) = (n/r ) ] (r /n) log{1 - [1-E exp(-] f(j/n)xn,j)]} + o(1) -
i=] j=(i-1)r o
“ -
1 S
= (n/rn) Iolog[] - Rn(t)] dt + o(1). ! i
Write y(x) = -log{1-x) - x, x « [0,1), so that ¢(x) - x2/2 as x -~ 0. Hence {1ﬁi£
for large n, lw(Rn(t))l < Rﬁ(t) for all t ¢ [0,1] since clearly Rn(t) -0 "‘w:
- uniformly in t by Lemma 3.1, showing that fiﬁij
1 A I ) RO
(3.4) (/rg) | ToRy(e1ae < R(0)1% dt 0 S
0 0 n v
since ((n/rn)Rn(t) is uniformly bounded and rn/n -+ 0. Combining (3.3), (3.8) :1;
and Lemma 3.1, it follows that ;”
] 1 -
1 - f =z - -
09 E exp( J[o . dN) = -(n/r) [ R (t)dt - (n/r ) )[ V(R (t))dt + o(1)
' 0 0 A
(3 3] l

1 .
-0 J (- e-f(t)Jnn{j})dt + 0o(1)
0 o

.................................................................................
..................................................
..............................

..................

..............................................

----------------------------------------
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This converges as n » « by the assumption that Nn converges in distribution.

But this implies in particular that the limit 1im 7 e SV, {j} exists for
n

o j=1 P
each s > 0, which is equivalent to the existence of a measure u on {1,2,3,...} i{f§
MO
such that «{j} = lim « _{j}, j=1,2,..., and in this case v )
n
now
Vim J ey (5} = ) e™aij, s o, o
N j=1 =] R
’
It now follows from Theorem 1.1 that
E exp(- I fdN) = 1im E exp(- J den) N
[0,1] NHoo 0,11 ;o
VL ¥ o), s s
= exp {-01 [ (1-)e m{j}) dt} S
0 j= ST
where n is necessarily a probability measure. N ? o
When 0 # 0, the probability measure n in the theorem is obviously restricted fi:;ﬁ
to a certain class; for example, by Fatou's Lemma and stationarity, e
)
o o [n/k ] [n/k 1 .
Loin{i} = ] i-lim P{ ] "xf\'j)m' ] "xf,'J)- > 0} .
i=1 i=1 e §=1 , j=1 :
@ [n/k ] [n/k 1 ’
<viminf Jipc 5 "D =ayec] "ul) s 0 3
- N+ o i=] j=] s j=] sJ
= 1im inf (k_/07)- E( ) My tly = =
N n J-__.] n’J 0 r '-::
R
The precise relationship between 06 and m is still an open probiem. g;%i:
2
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Theorem 3.2 shows that under broad conditions any 1imit for the exceedance
point process must be compound Poisson. On the other hand, a constructive result

may also be stated as follows.

Theorem 3.3. Assume that the stationary sequence {f .} satisfies the condition

A(ugr)) for some 1 > 0 and that 1im P(M < uﬁT)} = e™"" for some 6 ¢ (0,11.
N

Suppose there exists a sequence {kn} which tends to infinity and satisfies

(2.2), (2.3), and for which the limit n{i} = 1im nn{i} exists for each

n-»o
i=1,2,... (where un{i} is defined by (3.1)). Then n is a probability measure,

and NﬁT) converges in distyibution to a Comnound Poisson Process with Lanlace

Transform exp {-01 fé (1- » e'f(t)in{i})dt}.

i=1

Proof. The assertions follow from arguments similar to those in Theorem 3.2
provided that » is a probability, or that the family {nn} of probability
measures is tight, which follows readily since lim X?=] in (i} = 1/0 <
(cf. (3.6)). " M

In this result existence of the limit 1im nn(i) was assumed. Some
particular sufficient conditions for this may be found in [4], where a result
similar to Theorem 3.3 is proven by other methods.

The next result shows that when the conditions of Theorem 3.2 hold for
all v > 0 then the parameter 0 and the cluster size distribution for the

1imiting process are independent of t.

Theorem 3.4. Suppose that for each t > 0, the stationary sequence {gj} satisfies

the condition A(uﬁ‘)) and Nﬁ') converges in distribution to some point process

w1,

Then N(1) is a Compound Poisson Process with Laplace Transform

P R
. ‘°, "« ". 4" -" P

. W
L4 aa

- e
G

Lo
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1
exp{-61 J (1 - Lof )dt) where 6 and L are determined as in Theorem 3.2, o
0

and L being independent of .

Proof. By the representation (3.2), it suffices to show that

1]/12

Tim L )(f) = (1im L )(f)) for each eTp > 0 and each non-neaative
2

(T (1
N> Nn 1 N+ Nn

continuous function f. For simplicity, we only consider the case T]=T<]
and 12=1, the proof for the other choices of 1T, being similar. Let f be

a fixed non-negative continuous function on [0,1], and

q(X) = f(X/T), 0 _<.
0

X <1
s T<x <1
It is readily seen that

Lo @) = £ el Taa i) 1 = € el 3 ati oD o
(1) *° 2 [n/1).5 021 [n/7).3
Nin/1] J=1 J

since (n+1)/[n/1] > t. Thus

L (T)(f) -1 (1) ()]
M N[n/T]

& exp(=] #m 1)) - € exol-] atart el 0
P J=] J Xn,J P j=] ) [n/T]hj

I A

n n
.E exp(gzlf(j/n)xat}) - E eXP(EZ]f(j/")X%lzw],j)!

+

L4 T 0 (1)
‘E exp(‘};f(‘]/n)x[“h]’j) - E exp(gZ]g(J/[N/T])X[n/T]9j)l.

It follows from Inequality (2.7) that the two terms in the last expression

. . ....
-y oL
. v
R
' R T

o ala g
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are bounded by, respectively,
(1) (1) -a(i/[n/11) -f(i/n)
alFlug™") - Flups s o le - e |(x + 0(1))

where both expressions tend to zero. In view of Theorem 3.2, the Laplace

1
Transform of N(]) is exp {-0 I (1-Lof) dt} for some © and L. The above
0

derivations imply that

1
LN(T)(f) = 112 LN£1)(f) = ;12 LNg])(g) = exp {-0 JO (1 - Loa)dt})

1
exp {-01[ (1 - Lof)dt}
0

where the last equality holds by a change of variable. This concludes the

proof. f

It is worth noting that the theorems stated in this section can be
extended without further effort to considerations of joint exceedances of
finitely many levels. With results of this kind, so-called "complete conver-

gence" theorems may be obtained. A separate paper is planned on this topic.

4. Applications and Examples

First we apply our convergence results to problems that are of concern in
the more traditional theory. Let Mgk) be the kth 1largest amona R]’EZ"“’En'
It is obvious that (Mgk) < k=1) is the same event as (NﬁT) < k-1). Using this

fact, one can derive asynptotic distributions for properly normalized Hﬁk).
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Theorem 4.1. Suppose that for each 1 > 0, A(uﬁT)) holds for (.} and NﬁT)
converges in distribution to some non-trivial point process N(1). Assume

that a > 0, bn are constants such that

(4.1) P{an(l“ln - bn) <x} » G(x)

for some non-degenerate distribution function Gn (necessarily of extreme value
type). Then for each k = 1,2,...,

. (k)
1im P{an(Mn - bn) < x}

n-ooo

k-1 k-1 (-log G(x))? .
(4.2) = G6(x) [+ } ———- w3 {}]
51 1= '

(where G(x) > 0, and zero where G(x) = 0), where for j = 1 n*j is the j-fold
convolution of the probability w defined by «{i} = T1im nn[i}, i=1,2,...,
n-»o

T beina given by (3.1) with any v > 0 and any sequence [kn} as described in

Theorem 3.2.

Proof: According to Theorem 3.4, the Laplace Transform of N(T), T >0, is

given by (3.2) where 0 ¢ (0,1] is such that P{M_ f_ugT)} +e™"" and L the

| Laplace Transform of the probability measure m stateg in Theorem 3.4, 6 and
L being independent of 1. Since P{a (M - b)) < x} - G(x), Theorem 2.5 of
[9] implies that G is one of the three extreme value type distributions, and

1im P{an(rr@n - bn) < xt = G]/“(x) where ﬂn is the maximum of n independent

n-oo

random variables all having the same distributions as £y Thus

Tim P{ﬁn < a;]G'](e°OT) +b ) = 676 e ")) = e B

[ 4 i

. AR _,
S BRI P
FEL L AP
., AR L,
. L
- R
: . s el
LR P
. AR AP .
. e
. A AN
RPN U PSP I P M )

.........................
. P A AR T S
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which shows by Theorem 1.5.1 of [10] that

1 - F(a;]G'1(e'eT) + bn) _i/n as n » o,

1/0

Writing 1(x) = -log G/ "(x), we thus have

(4.3) 1 - F(a;]x + bn) C1(x)/n.
Now it follows from (3.2), (4.3) and the fact that NgT)([o.l]) d N(“)([o,l])

(cf. Theorem 2.1) that

vim pha () Z by < xd = vim peyK) - Wl

n»n | 1 Redd

"

Tim P{N&T(x))([0,1]) < k-1 = PN (10,17) < k-1
e

k-1 J k-1 .
- e-GT(X)[] *.E] L91§¥11_A.2. H*J(i)]
J= 1=)

which gives (4.2) since e'uw(x) = G(x).

We end with two examples which illustrate the theory.

Example 4.2. A trivial example of a case where clustering occurs is given

by Ej = max(n;,n ]) where {nj} is an i.i.d. sequence. In this case 6 = 1/2,

AN
clusters have size 2 (in the 1imit) and the limiting distribution (4.2) for

Mﬁk) becouies

(k“])/Z] g_]og G(X))j ]

Tim pia_ (M%)~ b ) - x) = 6(x)D) L
nn n -
Jj=) Jj.

where G, an.bn are as in (4.1). This is an obvious modification of the

L
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classical result and simply reflects the fact that exceedances occur

(predominantly) in pairs.

A more interesting example, with stochastic cluster sizes, is the following:
l Example 4.3. Consider the sequence

_ k
Fj = max p Z._k

£

k>0
. where 0<p<} and {Zj} is an i.i.d. sequence with common d.f. exp(-1/x), x > 0.
This example was due to L. de Haan who showed that {Ej} has extremal index

_ 6=1 - p ((cf. [9]), which can be any value between zero and one. It can

! be shown by some calculation (cf. [3], Chapter Five) that the limits (3.4)

- exist and are given by «{i} = 01-](]-0). It then follows from Theorem 3.3

li that NﬁT) converges in distribution to a Compound Poisson .Process with

ﬁ .
4 Laplace Transform exp{-(1 - p)1 f& (1- fgiﬂdj}e'Jf(t))dt].

i In particular the limiting cluster sizes follow a geometric distribu-

o tion.

o

]

®

P;

éﬁ »
b
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